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Introduction:

This repori{ reviews the status of the photothermoviscoelasticity
research project being conducted in the Department of Aeronautics and
Astronautice at the University of VWashingiton under Research Grant NsG-401.
Parts of this report have been compiled in a form suitable for a NASA
Technical Note and will be submitted for approval in the immediate future,

The research program i& directed to establishing a procedure for the
stress analysis of geometrically complex structures containins visco-
elastic materials in total or in part and subjected to transient tem-
perature and/or non-proportional boundary loadings. A primary objective
has been the development of routine experimental procedures for obtaining
such stress statea, As detailed in this report such a routine procedure
and the necessary equipment have been developed for linear viscoelastic
materials, The experimental procedure employs and extends the techniques
of photoelasticity. The necessary interpretative procedures employ the
basic mathematical hypotheses and formulation presented herein,

Under the existing grants, the fundamental mathematical formulation
of the relationships between the dielectric characteristiecs and the
mechanical state of linear viscoelastic birefringent materials was for-
mulated and experimentally verified, Since the observable fringe patterns
obtained in a polariscope are related directly to the dielectric character-
istics it is possible to relate these patterns to the mechanical state.

To reach this point in the continuing research program the following de-
velopments were necessary:

(a) suitable transparent birefringent viscoelastic plastics for

which 1t is poseible to tailor the mechanical properties;



ii
(b) apparatus for the optical and mechanical characterization

of the viscoelastic plastiics:
(e¢) a rotating element photoviscoelastic bench:

(d) apparatus and techniques for obtaining thermal properties
and the measurement of temperature effecis on the optical

and mechanical characteristics:

(e) experimental techniques for conducting photothermoviscoelastic
observations in the polariscope and the interpretation of

these photographically recorded observations:

As with any well conceived experiment the development is built on
an exhaustive analytic investigation of the optiecal and mechanical behavior
of viscoelastic materials, The first{ part of this report presﬁnts a survey
of the results of these studies. Details appear in the open.literature
as referenced, Fundamental hypotheses made in this anelytic formulation
required experimental verification and these are reported in the second part,
In the concluding section of this part the application to a typical thermo-
viscoelastic problem is illustrated. The example chosen is that of a
pressure and thermally loaded solid propellant motor grain crosg-section
which is a problem presenting severe difficulties in theoretical analysis.
The method is applicable to any thermally and mechanically loaded structure
containing linesr viscoelastic material and which can be model=d as a two-
dimensional specimen, The same method is directly applicable to three-
dimensional models by using imbedded polariscopes but the experimental tech-

niques are much more difficult.
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The appendices describe in detail aspects of the interpretative
techniques, the nature and characterization of the birefringent visco-
elastic plastice used and the apparatus developed., Particular attention
is drawn to the rotating element photoviscozlastic bench which was
first successfully used in 1982 but coniinues to be modified and improved
to suit the increasingly complex experiments as we reach for the general

all-purpose equipment and techniques.




I, Theory

1. Bsasic Ideas.

This section provides an analytical basis for understanding tne
optical properties of birefringent viscoelastic materials and for the
application of these meterials in experimental stress analysis, In
order to determine the state of siress in a viscoelastic body, the
bagic idea is to manufacture a model from a transparent birefringent
material and then determine the stress state of the model by obser-

vation of th> model in & polariscope, In the viscoelastic case, it

is necessary to have a complate record of the history of isochromatic B

fringe order and isoclinie angle in order to determine the stress at
the present time,

The classical theory of linear viscoelastli:zity is reviewed in
section 2, l

The theory of propagation of light in a dielectric at r;st is
described in gection 3. It is shown that the isoclinic angle at any
time is determined by the orientetion of the principal axes of the di-
electric tensor and the fringe order at any time is proportional to
the differense in principal indices of refraction (see reference 1),

In section 4, the relationship between optical characterietics and
mechanical state is explored. This is the core of the problem. A4

theory suificiently general to interpret benavior atv small strain is pre-

sented,



2.

Viscoelasticity.

2.1, Basic Equations: )

In this section some results are cited which arae,used to interpret
our experiments, The experiments have been purposely limited to small
displacements and quasi-static loads; that is, conditions are such that
the classical linear theory can be used and inertia terme ne’lected.

The usual cartesian tensor indicilal notation and summation convention

ars used.

- In rectangular cartesian coordinates, the equilibrium equati S

are

3 £, =0 (2.1-1)

n “xm k

The body force fk will be negligible in our experiments, The okm'are

the components of the stress tensor which is symmetric. The symbol

am will mean partial derivative with respect to the coordinate xm,

throughout the following discussion,

The components of the sitrain tensor €ym 2T relatea to the dis-

placementi veetior Uy by
=% ( ( 2
€xm 3 \ak Yy * n 'k> (2.1-2)

In order to write the stress-strain relations it is convenient to

introduce the deviatoric sirecss Sy and deviatoric straiu €em defined by

6

52 %km 1/3 Opr km

km
(2.1-3)

Cxm * Cxm T 1/3 €rr 6km

where ékm denotes the Kronecker delta, Then, for an isotropic material




t
S1m = j 26 (t-1) ékm (1) ar (2.1-4)
o
% }
1/3 S j K (t-1) €pp () ar (2.1-5)
o

Where the dot refers to the derivative with respect to the variable
indicated and{wrr and €., are the mean hydrostatic stress and strain
respectively,

The inverses of equatlons (2.1-4) and (2,1-3) are

X

_ N : ,

2e, = | J'(u—T) Siem () dr (2.1-6)
t

o
€ = l 1/3 B (t—w)‘orr () ar _ | (2.1-7)
The functions G(t), and K(%), or J(t) and B(%) characterize the

material and have the names;

J(t) ~ shear creep compliance
B(t) - bulk creep compliance
G(t) - shear rzlaxation modulus

X(t)

bulk relaxation modulus

The funciions are related by Velierra integral eguationc:

G (t-7) J (7) d7v = % , (2.1-8a)

K (teT) B (1) dr = % (2.,1-8D)

O“ —act O Tact
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Given J(t); G(t) can be calculated by solving (2.1-8a) similar to the
method shown in Appendix A,1l,

We now recall some resulis for special deformations., First, con-
gider a uniaxial stress fiecld which is approximated by the tension test,

If Oyq = O while the other components of siress are zero, the deviatoric

1

stresses are
8 = 2 3 o 8 =-] 3 o] s = - ] 3 ag 2.1-9

and the others are zero. From equation (2.1-3), (2.1-0), and (2,1-7),

ey Jl D (t-1) Gy, dr (2.1-10)
[}
t
22 % €33 % - L v {(4=1) D (%-7) éll (t) dr (2.1-11)
Whzre,
D (t) =1/3J(t) + 1/9 B(%) {(2,1-12)
(g 22 J(1) - 2 B(t)
Y 6 J(t) + 2 B(t) (2.1-13)

i

The pair of functions D(t) and v (t) also characterize the material

and have the nanes

D (t) ~ tensile creep compliance

v (t) - "Poisson's Ratio" for creep

*
Thes definition chosen here leads 1o ey = v oe for the uniaxial creep

test, This definition is not a unique generalization of the idea of

Poisson's ratio for elastic materials,



Solving equations (2.1-12) and (2.1-13) we have

J=2(1L+v)D

(2.1-14)
B=3(1-2v)D

Thus the balk creep compliance and the shear creep compliance and,
by {2.1-8), the relaxation moduli ean all be calculated from the
fanetions v(t) and D(t) ocourring in uﬁe equations deseribing the
tensile test,

The inverse of (2.1-10) is

-

~

ne E (t-1) éll (r) ar ; (2.1-15)

c.

The new functlons is related to the tensile creep compliance by the

Volterra‘integral equation

L

‘D(tw)E(T)m = % (2.1-15)
o

and has the nameg

F(t) - tensile relaxation modulus

The complete solution to a problem in linear viscoelasticity
is determined by equations (2.1-1) - {2.1-3) and a pair of the siress-
strain relations such as (2.1-4) and (2.1-5)

The solution must satisfy certaln boundary conditions., Usually
the displacement vector is given over part of the boundary while the
stress vector Fk 1s given o.er the remainder. The siress vector is

related to the siress tensors by




where o are the components of the unit normal to the surface.

2.2, Elastieity:
The theory of linear elastic materials may be viewed as a special

case in the theory of viscoelasticliy when

J(t) = Jo h(t) (2,2-1)
and
B(t) = B_ h(t) (2.2-2)

where h(t) is a unit step function

- o, t1<o / _
h(t) L1, tzo0 (2.2-3)
Then
G = Go h(t)
K = Ko h(‘t) A (2.2—4)
and
D(t) = D h(t)
E(t) = E_ h(t) (2.2-5)
The elastiec constants G, £ , v_, and K_ are related:
o’ "o’ o o]
E
C, = —_ (2.2-6)
2 (l+vo)
E
K = ——2—u (2.2-7)
° 3 (1-2v)
ol
The fi=1d equations become
3 o, +f, = 0 (2.2-8)

Sp = (Bk w ém uk) (2.2-9)




Bym = Om = /3 0pp Syp (2.2-10)
®m © Sim "~ 1/3 pr Oknm (2.2-11)
Sxm °© 2Go ®m | (é.2-12)
1/3 Opr - Ko Erp (2.2-13)

Thus, time plays the role of a param:ter and does not appear explicitly

in the field equations,

2.3. FProportional Loading:

An importani class of problems are those for which the siress

vector on the surface has the form

F

L = F (xt,%%,%°) £(t) (2.3-1)

This is termed proportionsl loading. Let us determine under what

condi tions the stress fi=ld has the form

“km © km (x) £(%) (2.3-2)
where 5§m can be determined from the thecry of elasticity.

The boundary conditions (2.1-17) give

Oym Bp = Fy (2,3-3)

In the absence of body force, the equilibrium equations (2,1-1) give

§n5§m = 0 (2.3-4)
The deviatoric stresses are

N Ekm £(t) s (2.3-5)




where
%&f ka -1/3 EQr B | (2.3-6)

The strees-strain relations (2.1-5) and (2.1-7) zives

2e =2e. g(t) : (2,3-7)
“rr ¥ Crr k(t)
where

2 em = 1/GO S (2.3-8)

€pp = 1/3Ko Ty (2.3-9)
t . .

g(t) = ¢, [0 (sr) £ () ar (2.3-10)
6
7 .

k(1) = K f B (t1) £ (7) dr . (2.3-11)
(o]

The constants Go and Ko afe arblitrary constants,
Substituting equations (2.3-7) into the strain displacement

squations (2,1-2), we see that the displacements can have the form

;Lm N % (3k Up * am Gi) " (2.3-12)
W= 4 (x) e(t) (2.3-13)

only if g(t) = k(t) or €. = 0; that is, only when B(t) is pro-
portional to J(t) by a constant factor,
From equations (2.1-14)

1-2 v(t)
1- v(t)

B(t) = 3/2 () (2.3-14)



Thus B(t) is proportional to J(i) only when v is constani, rurtier,
3, = Conly wien v is a constant equal to 3.

If v is constant, then the stress end displacement are determined
by (2.3-2) and (2.3-13) wnsre the barred guantities satisfy the
equations (2.3-3), (2.3~4), (2.3-8), (2.3-9), (2.3-19), i.e. the’
equations of elastieity, provided the boundary conditions of the vie-
coelastic problem agrees witu (2,3-1), and (2,3-13).

In faet, v is n:ver constant for any material. Rut 1t frequeﬁcly
happens that the variation in v with time is slizht or the etffect of e —
changes in v on the solution to the elasticity problem is sii;it,

In these cases the stress field under proporiional loadin: can be
approximated by the elasiicity solution,

2.4. Plane Stress:

If the displacements ul, u2 are independent of x

3 and o = G,

33
the equ@tions of section 2,1 can bve simplifi-d tc the followin-

- {
B% Oq3 = 0 (2,4-1)
tqe =3 (3, ug + A ) (2.4-2)
53 "9 T 1/3 Tep O (2.4=3)
- . S 3
€3 T %y - 1/3 “rr VaA (2.4-4)
o
2e_, =J J(t-1)8_, (7) av (2.4-5)
A T:O =5
& = ! 1 ! - F.' i- / =0
“rr° 1/3 3(t-1) o, (7) dr 2.4-0)
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The Greek indices have the range 1, 2 and all quantities are functions
of < and t.

Th» equations (2.4-1) - (2.4-6) define a plane stress problem.
There is an important class of plane stress problems for which the
solution is independent of the material properties which we now con-
gsider., In this casge, the siress can be calculated {rom the corres-
ponding elasticiiy solution,

Equations (2.4-1) are satisfied by the Alry stress function F

: (2.4-7)
S48 EGY &85 aY 35 F
Where i;as is the permutation symbol.
Fliminating the displacements from (2.4-2) gives

ab 3T T 5 TE’

These are the compatibility relations.
Substituting (2.4-7) into (2.4-3) - (2.4-6) and the result

into (2.4-8) leads to

U F = Ba BG ag Bg F=20 (2,4-9)

If the boundary conditions are sol-ly on stiress, ihe equations (2,4-9)
end the stress boundery conditions completel;, determire ihe siress
independent of the meterial properties and the stiress ig the same as

for an elastic materizl,
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2.5, Short Tim= Solution:

We consider now a suddenly applied load and determine the solution
immediately after loading (that is, immediately after all wave propaga-
tion effects are completed).

The stfess and strain fi:ldsare related by (2.1-4) and (2.1-5).

For a step change at time zero,

S 2C(0) & (2.5-1)

1/3 Ty X{o) % e (2.5-2)
Further,vfrdﬁr(é;l)ir

G(o) J(o) =1 (2.2-3a)

K(o) B(o) =1 (2,5-3b)

The constitutive relations are identical to the elasticity equations
with elastiec modull equal to the values of the2 relaxation modulus at
time zero, Therefore the siress distribution at the insiant of loading
will be the same as given by the elasticity sclulion for shear modulus,

G = G(o) and bulk modulus K = K(o) or Foisson ratio v = v(o)

2.5. Long Time Solution:

Th2 viscoelastic materlals usually encountered hav2 a fading
memory, That is, the siress dus tc a siep change in strain decreases
in time, The result is that when loads are maintained at a constant
value, an equilibrium state is reached sich that no further change in

stress or straln occurs,
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By (2.1-4) and (2,1-5)

Sgn (=) = | G(=) e (n) ar
0 (2,6-1)
3=) e (=)

1/3 0, (=) = K (=) ¢ (=) (2.6-2)

The constitutive equations coincide with linear =lastilicity with moduli

N
.

i
equal to the values of the relaxation functions at tim: i-finlty. Conse-

[ ]
quently, if the surface loade remain coansvant, ths ciress sialte will

eventually approach that of the elasticity solution for shear modulus - -

G a O(») and Poisson ratio v = v (=),

2.7. Vave Propagation:

y

#e consider here a yropagating discontinuity in acceleration, Such
discontinuities are always accompanied by discontinuiti:s in gradient

of strain. They propagate at speeds characterisiic of ths material,

2N

The speed of propagation of such disturbances is ofien found to co-
incide with the speed of propazation of infinitesimal harmenic rields
where such prob!ems can e solved.ﬁ Thus we ma; suppose the speed of
propagation of discontinuities will bz the same as “he cpzed of pro-
pagation of a disturbance introduced bty small impact on “n~ 204 of a rod,

Consider a surface across which som: funetion £ is disconitinious,
L2t (] denote *he difference of the valu-s of £ on each side of the
surface at any instant.

Now consider the uniaxial sitress fileld, The balance of linear

monmentum gives
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. %
Ay ATu
‘11 1 .
3K 3t
Let
azul
8 = |17 : (2,7-2)
3%

Then from tie kinematics of singular surface, the jump in acceleration

is

3 .
B B (2.7-3)

where U is the speed of propagation of the surface, Thus

ER

L o Pe (2.7-4)

|
!
boay
L3k

From the constitutive relation for uniaxial stress; egialions (2.1—15),

= E(0) £, (%) + LB () ey (1) A7 ' (2,7-5)
o] .

911

Differentiating

P N
Ney B 1 v )',’11
11 E(o) —_— B (fer) —== (=) dv (2.,7-0)
1.1 w1
3x ANTAX o) 3P



14

This relation applies on each si e of the wave. Tuus,

3o
—L| - E(o)s (2.7-7)
AT

The second term in (2,7-6) is the same on both sides of the wave since
the change in the integrand at a discrete point does not change the value
of the integrsal,

From (2.7-7) and (2.7-4)

= -l—lEj (2.7-8)
3

That is, the speed of propagation is determined by the value of the

tensile relaxation modulus at time zero.

2.8, Temperature Effects:

Fach of the material property functions 1s temperature dependent.
That is, if the .ensile test is cond.ucted at dirfereut temperatures, ihe
tensile creep compliance is a different function of time., In many
instances this tcmperature dependence can be deseribed by an empirical
rel ation involving the so-called ‘time-iemperature equivalence", The
material is theun termz=d thermo-rheclogically simple,

Let G (&) be the relaxation modulus at constant temperature T and

@l

(t) be the relaxation modulus at soiue reference temperatire To’ see
Fig. (2.1) Suppose that the effect of tlemperature on the short tvime

modulus and long time modilus is such that:

G (o) = G (o) ' (2.8-1)
G (=) = G (=) (2.8-2)
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In this case, lhere always exists e pair of times for which G and G
have the eame value
G (t) = G (g) ' (2.8-3)

The time f# is called the reduced time. It depends on the temperature
T of the test and the time % at which the ordinate  is measured,

Empirical evidence suggest that for many materials

g = a(T)t. (2.8-4)

3

'he function a(T) of temperature is known as a temperature shift factor

-

( in the sense of shifting the curves if Fig. (2.1)  were plotted on
log time).

Similar results are thought to describe the isothermal values of
the other material properiy funciions,

Isothermal experiments c;nnot determine the nature of the siress-
strain relationship for tests in which the temperature varies with time
and no experimental evidence is available. A possible generalization
which is compatible with the isothermal observations was proposed by
Morland and Lee(z). Their idea is *that rate of charge of the modulus
is determined by the inetantaneous temperature,

If G /t) is the relaxation modulus measured'at varying ‘temperaiure

T(t), then (2.8-3) holds, Thus

a G dg
wralel i oy (2.8-5)

The fundamental hypothesis is
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This agrees with (2,2-.4) in the isothermal case, I. temperature

is a runction of time for a given particle,
t

fle)= | a (2(1)) at (2.8-7)
0

This generalizes (2.8-4) to the case of varying temperature,

Now suppose the same temperature variation occurs but the
strain is applied at time 1, Let ET(t) be the resulting relaxation
modulus, Again assuming that the initial and final values are

independent of temperatures, there exists a function‘?T(t) such that

( =_" s
F (1) =G (5) (2.8-8)
and
ud S -
at dg_ dt

The fundamerntal hypothesis is

-(-iEI- = { o
- Q(T) \2.8"/>
dt
Since
F. (1) = G (o) (2.,8-10)
we must have
5. (1) =0 : (2.8-11)

Thus,

T
o= [ a (1 (%) at
O



t T
§T = J a(T (1)) dt -Jf a(I (t)) d% ,
o 0
= E(t) - € (1) (2.8-12)

The stress due to continuously changing strain is then

t

N
£
o~
R}
P
'l
N

|
——~
3
~
g
[©]

S, . =

f - /
iJ : \..> dT \2.8—13)

J "1
o
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Birefringence,

3.1, Ideal Dizlectric:

In this section, we review a theory of birefringence based
upon the description of 1light as an electromagnetic wave propagating
in an anisotropic dielectric, Our experiments are purposely limited
to quasi-static deformations, Thus, during the time of passaze of an
eleciromagnetic wave, the displacements of the material are negligible,
The equations of a diel=ctric at rest can therefore be used, Further-
more, since we intend to observe only relative intensity of Light

transmitted, the absorption and dispersion will be nezlected., The

equations of an anisotropic dielectric then have the tollowing form:

curl H - 12 = 0 . (3.1-1)
- dt

‘ 38 \

curl E + 3T 0 , (3.1-2)
D; = i Kij Ej (3,1-3)
5 o= fop (3.1-4)
d + B

Here, E 1s the electric field; B is the density of magnetic fiux;

{d is the polential of free curreul; D Is the potential of free charge,

o and U, are fundamental properties of the material in which the

propagation occurs, Kij will be termed the dielectric tensor.

The fields D and B are also subject to the relations

divB =0 - (3.1-5)
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However, these relations are not independent or (3,1-1) and (3,1-2)

3.2. Plans Wave:

We will consider only the case when thz direciion cf propagation
coincides with one of the principal axes of the dielectric teusor.

L2t us choose the coordinate axes parallel to thz principal axes
of the dielectric tensor Kij and taks x3 = 2z to be the direction of

propagation ¢f the wave, A plane wave can then be represented by the

real or imaginary part of the terms:

E=a el? (3.2-1)
B=pe" (3.2-2)
D=4 e (3.2-3)
H=h e (3.2-4)
m = kz - Wt (3.2-3)

whore k 1s the wave number; w is the angular frequency; a, b, 4, and
h are constant complex vectors.

The field equations (3.1-1) - (3.1-4) imply (see réference 7)
that only itwo such plane waves are possible, In each case the direction
of d and & coincide with one of the remaining principal axes, and b and
h coincide with the other. The index of refraction defined by

N = K (3.2-6)

has the value

N = /K (3.2-7)
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wnere K is the printipal value of the dielectric tensor associated
with the axie along g. The field equations (3.1-5) are satisfied

trivially.

3.3, Dielectric Slab:

We consider a slab of dieleciric of thickness I hounded by planes
which are surfaces of counstant vaiuegof z, and the z-axis is a prin-
cipal axis of K. Choose the remaining coordinate axes alon: the prin-
cipal axes of K.

If a plane transverse-wave ig incident on one surface then part
of the wave is transmitted and part is reflected, A simlar trars-
mission and reflection occurs at the second surface, Taus, there are
five electiromagnetic waves as shown in fig, 3.1 .

If the incldent wave is such that the electric field coincides
with one of the principal axis K, then the eleciric field of =ach

wave has th:t same direction. The incident field
E - -
E =3 (3.3-1)

and the transmitted field

E, =38, e (3.3-2)
-7 5

~1
o

are parallel and (see reference

85 = C g (3.3-3)
whare
-1k h
4LNe + 0 /
C = 17 4 \3-3'4)
(l*N)Z e-—lkﬂ - (l_N)2 e—-.gkh

where k is the wave number -iven by 73.2-11) ard (3.2-12) corresponding

to the principal axis along E.



. 3.4. Plane Polariscope:

A monochrometic transverse wave 1s obtained by passing mono-
chormaiic 1light through a polarizer, This wave is incident on the
p]

dielectric sladb, The ceordinating axes sre priucipal axes of Kij

and the wave propagates alcny Liv 2z axis, The inclient waves can

| be represented as the sum of two waves, eaclh parallel Lo cne ol the
|
remaining principal axes, The formula {3.3.3) appliec to each wave.

1 The iransmitted wave is then passed through a second poleroid.

3

The transmifted wave is given by

|

o . . ik z-ut
‘ E =4 (C1 cos o cos 3 + (O, sin a1 sin 2) e ( o )
|

whare A is the emplitude of the incident wave; 2 is the an.le beiween

l the xl-axis and the axis of the polarizer; 3 is the angle betiween

,

the xz-axis and the axis of the anal.zer; k = ./c; and ths conciants

Cl and 02 are given by the formulas 2.3-4) with k = kl or k = k2
respectively (see reference 7).,
Equation (3.4-1) can e put in the form

i ;
F o= AK. cos o cos R e (koz - ot - ko bt )

1 v 1

. i N (304-2)
+ AKX, sin o sin 5 e (koz I LI DY
where
2 N
K = :

n / o) - (3.4"3)

DN R cosf kn - (LN 22810 ¥ b

T hol n n
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Fither the real or imagivary part of T i ihe anplivile of lichy
transmitted, The imaginary part is
I =7 sin (koz - wb -k h oy ) (3.4-2)
whersz
D cos X = A Kl CO8 L COS B cos 91
- (3.4-6)
+ AKX, sin & sin 3 cos 7,
2 2
[
and
Q Bin X =AK1 cos a cos 3 sin 61
(3.4-7)
+ A K, gin 2 gin 2 sin 7.
2 2
For the case 3 = o + /2 , 1,2, the polarizer and aral;zer are crossead,
Than
2 2 .2 L 2 L2 .
4 Y = A7 sin” 2x (F,7 + K7 - 2k A, cos 2u7) (3.4-8)
1 2 12
2, -5

n o= : [3.4=7)

2 . 2
cos” 1 sir"» cos 2mT)

(3.4-10)
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For the materials used in photoanalysis, N1 is eqgual to N2
in th: natural stete where they have a value of about 1... In the
deforma2d state, N1 and N2 change by terms of avout 10'5. In such

cases, the minimum values of equation (3.4-8) occur at nearly integer

values of n and

ho . .
B (1,1 (3.4-11)

n

The minimum velues of equation (3.4-10) occur approximately where n
is en odd-multiple of *. The locus of all such points form lines on
the model which are called isochromatic lines,

From equation (3.4-8), there will be zero light intensity at
those points for which the principal axis of the dielectric tensor
coincide with the axis of the polarizer-amalyzer., The locus of all
such points form lines on the model which are called isoclinic lines,

The variable n is called the fringe order and the difference

in principal indices of refraction is %termed the birefrirvcerce
S

A= Nl"'NZ. (3.4-12)
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4.1, General Law:

The optical character of the material is determined by the
dielectric tensor Kij and therefor= by any other tensor from which
the dieleciric tensor can be calculated,

The tensor wnich has the same principal axes as E'and which
has the principal values equal to the prinecipal waves speeds is given

oy

o
|

V.,

=e¥. " (211
13 ¢ Kij (4.1-1)

where ¢ 1s the velocity of light in free space, This tensor completely

determines X and is used by Head,\4}
-1
The tensor K, , plays a direct role in the solution of the

. {3)
electromagnetic fisld equations. It was used by Mindlin.‘}’

The tensor which has the same principal axes as Ki? and which
v

has principal valus=s egial to *the principal indices of r=fraction is

given by

=

i
=

Pafe

+~
o)

!
o
S

Let us call Nii the refraction lensor. The rrincipal aves of N
(8]

~

determined by the isoclinie and the difference in prinecipa' values of

Nij is determined by ihe leociromaiic fringe order as snown i Section 3.

Since thes tensor N is mos', directly related Lo the experimanial

1]
observations, it will be used to formulate the mechanical-oplical law,

-~

If a hivh polymer is mainvaired at ecnsiant siralr, ihe rringe

i

order is observed 1o decrease, The material is said Lo experisnce
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optical relaxation at constvant sirain, The behavior is similar o
the stress relaxation observed at constant strain, Thus, we hypo-
thesize that the refraction tensor depends upon the history of
deformation with a fading memory,

We.will consider in this report only small displacements. Th=
fading memory rfunctional may be approximated in th=2 case of small
displacement gradients, In the case of anisotiropic material, the

relation becomes

N
N, (t) = N 5., + 5. 0 A(ber) &, (1) dr 4.1-3)
U o %13 10 A=) e () (4.1-3)

b o]
t
+ 2 ¢ Blt-r)i,, () ar
J i
o

Let
R, . =N,o = 1/3 N, 5., {h.1-4)

15 = Nyy = W/3 N 0y AR
1

denote the deviatoric part of Nij‘ Then

s .

i . . .

R., =" 2 B(t=r) e.. (7) dr (4.1-3)
LJ 1

o
where eij is again the deviatorie part of ke strain tensor., The tfunction
B(t) gives the birefringence at constant strain. It may, therefore, be

termed the optical relaxation modilus,

The inverse relation of (4.1-5) is

%
2 = =1 ot-_-\Y R +Y 4 (4125)
km (O AN / km \ /

The functions C{t) and B{t) are related by & volierra initegral equation
of the type (2.1-8),

Combining the stress-strain relation (2.1-0) wiin (4.1-J) zives

+
v

Ry = Jo gy (4-T) ékm (t) dar (4.1-7)




26
The functions B(t) and §(t) are related by
T .
¢ = | B(t=1) J (7) dr (4.1-8)
O }

The function (%) gives the fringe order at constant stress. It,

therefors, characterizes the optical creep at comnstant load,

The inverse of (4.,1-7) is
v .

Sym = be () R (1) ar (4.1-2)
o

The functions %(t) and % (i) are related br a Volter

3

a integral equation

i

of th- type (2.1-8)., S

4.2, Stress and Strain Birefringence:

Consider the possibility
B(t) = B, h(t) (4.2-1)

where h(t) is the unit step function. Thzn, equaticn (4.1-5)

becomes

R,.=2DB e,

iJ o 1§

SO W10 (4.2-2)
o)

y(t) = B, J(1)

In thie case, the birefringence is proportional to the difference
in principal strains and the isoclinic angle coincides with the
principal axis of strain. A material characterized by equations

(4.2-2) may be termed strain birefringent,
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Consider ihe possivilivy
¥(t) = v h(t) (4.2-3
Then, equation (4.1-7) becomes

H

R.., = g, ,
iJ o 1]

c(t) = %‘ J(t) (4.2-4)
0
B(t) = ¥_ (%)

In this case, the birefringence is proportional to the difference
in princgpal‘étresées and the isdclinic angle coincides with the

principel axes of stress, A material characterized by equations

(4.2-4) may be termed stress-birefrin-ent.

Consider an elastic material which is stress-birefringent.
Substituting equation (2.2-12) into equations (4.2-4) lezds to an
equation of the form (4.2-2). Thus, a siresc-birefrin-ent elastiic
material is also strain-birefringent. Similarly, a strain-birefringent
elastic material is stresc-birefrincent.

Consider the possibiiiiy

V(L) = a n(e) + 42 J(%) (4.2-5)

Then, equation (4.1-7) and (2,1-6) lead to

R ,=zas,,+3e,, (4.2-5)

This relation is often in fair agreement with the experimental data.
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The list ol such spscial cases of the representation of
Section 4.1 is endless., Such equations as (4.2-2), (4.2-4), and
(4.2-6) are certainly not universel but may describe some gpecial
materials aceurately enoush for some applications. <Such repre-
sentations as (4.2-6) may be useful in qualitative reasoning, i.e.

to exercises of "physical intuition”,

4.3. Slow or Rapia Motions:

The constitutive relations {4.1-%) are of the same form as
(2.1-4) and the function B(%) is generally found to be of the same
character as G(t), Thus, the same approximation theorems hold for
both relations.

For a step change in strair, the instantaneous value of the

refraction tensor is given by

Rij = 2 B(o) 2 ; (4.3-1)

Thus every material with fading memory is strain-birefringent for
sifficiently rapid strain., As shown in Section 2.6, such a material
is also =lastie in this time region, 1t is therefore also stress-
birefringent for rapid deformation.

If the strains are maintained constant, the refraction tensor

approach the value given by

RiJ = 2 B(=) e 5 (4.3-2)

Thus every material with fading memory is strain-birefringent for
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hown in Seeciioin 2.5, such a materlal

6]
0N

sufTici=ntly slow defcormation., &
is alko elastic, it is therefore also sirsss-birefringent for slow

deformations,

4.4 . Temperature Dependence:

Each of the material properiy functions iIs temperature dependent,
If ihe tensile test 1s conducted at difrferent temperatures, the optical
creep compliance ¢ is a differeut function of iim:, From the similarity
of the mechanicai and optical behavior, we may expect that certain
materials will have an opiical hwehavior which is thermo-rheologically
simple.

Let the reduced time be defined by

T

g(r) = [ v(x(r)) ar (4.4-1)
o,

The function b(T) of temperature may be termed the optical shift factor.
We then define an optically thermo-rheologically simple malerial by

the constitutive relation
4

Roo= [ 28 (5(0) - 2(n) &, (r) ar (4.4-2)
1) 3 i
5 .
where B(t) is the optical rslaxation modulus for an isothermal test
at reference temperature T. This generalizes equation (4.1-%),
It may happen that ithe mechanical and optical shift factors are

the same, However, this must be determinzd experim:ntally,
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II, Experiments

Summary:
The material from which the model is manufaciured must have
the same m>chanical characteristics as the protoiype. Therefore,
one must be able to prepare a polym:r of pre-determined relaxation
modulus, Our procedure is to mix liquid epoxy resins with plastizer
and hardener, and then cast a sheet of material. The model is then
cut from the sheet. By varying the proporiions of the ingredients,
the reiéxatigh tiﬁgé caﬂibe cﬁgngej over a wide ranje, This procedure
is described in Appendix £.2,

The optiesl properiiss of the model material are determined from
the tensile oreep test, This gives the fringe order at constant
strese ¥, The stress at constant fringe order »» is then calculated
by solving an integral egiation (sppendix 4,1.).

We consider here only plane stress prcblems, A model is then
loaded and heated and the temperature, fringe order, and isoclinic
ang%e are recorded at each point as a function of time, By us.ng
equation (4.1-3) and the previously determined function », the difference
in principal stresses and the orientation of principal stressss can

be determinad,
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Basic Formulae for Plane Siress:

Our experiments all deal with plane stress problems ‘Section 2.4).

The only non-zero $iTess componsnis are o _, ., T_ .
B > A 4
Th= principal sitresses in the plase are “he sirsss components

rela.ed to the axes making an anzle = with the x-y &ras:

2 TX 2 sx
tan A = ~—2L = —X (6.0-1)
0y S¢Sy

The principal stiresses are given 7

3, = cos orsin S+ 2 7 sin t eos
1 “x ’ v Xy
(6.0-2)
=g_sin 4 + co8 9 -2 1 __ sin & cos 3
92 X o Xy
or
- . \ I 3~ D0
0175 = (JX-Jy) cos 20+ 27, sin 2
(6.0-3)
= (s -5 ) co8 2+ 2s _sin 29
A\
Thus, ihe deviatoric siress CompoOnRENis
s, =5 =1 5 )
x ’)'x /3 (Jx+0'y>
s =0 =1 N ’ (6,0
5 =y /3 (.Xﬁjy) 4)
S Ave = 'TVT
Xy X3
completely determine the angle ~ and the differencs (31—;2) of’ the
.

principal stresses in ths plans.




32

Colving (6,0-1) and (5.0-2),

1, %7 sin” © + I, cos” (6.0-2)

_‘

[
v

»]

g

N
g

. /3]
P

=

8]

(9]

O

o

Thus

= o ).‘- - s' - I
Sxy ’1'x,y ”"”2(‘917"42') in 2¢

Similar results hold for the refraction tensor when th-*z-axis is

a principal axis:

hx - Ry - Nx - Ny = (Nl-hz) cos 2 m = & cos R
(6.0-7)
ny = ny =4 (Nl-Nz) sin2 v =35 % sin 2
The relation {4.1-7) lzads to
t
Leos 2 5= 1§ (t-7) a%— {(Jl () - Jy {v))cos 2 = ()} dr
o}
L (6.0-8)
Lsin 2= |y (1) Loy (71 -0y ()sin2 (1) ar
o
Th> relation (4.1-9) leads to
t n
(0]- f2) cos 2 3 = ' & (t-1) ‘gj Fo (1) cos 2 - (1)] dr
. | d . ) . .
<01_ 32) sin2 A = | & (t-1) = [a (r) sin 2 » (1)) dr
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daterial Calivbracsion:

‘Tne mechanical and optical properties of the material were de-
termined by the tensile creep test, .\ comstant wilaxial siress was
appli-d and the strain anda birefringence were recorded as desgeribed
at each of several benperatures, The trerimal p“np@r«\&u of whe
material were determined as described in ippendix A.4., The mechani-
cal and thermal properti=s are mot used in the experimental siress
analysis; they merely serve to ideznuvify tihe material tested., Only
ihe cpticeal creep funciion is n-eded to inierpret the obeer.ed
frin;e pattern,

For the tensile creep test, the principal axis of stress etrain,

y

and refraction coincide. ZEquation (45.C-8) leads to

\

(e = = £17.0-1)
where, by (3.4-11),
27¢ .
(v =& qny Le2)
Frow (2,1-10)
e (%)
U (L) = . ('7.0=3)
from {2.1-11),
SEREY
v (t) = - —L— ('7.0-4)
e (1)
X
Then J(%) and B(t) can be calculated from (2.1-14):
J =2 {(1+y) D
(7_(_%)

B =3 (L-29)
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Th2 constant stress 5 is applied and the intensit;y of light
traunsmitted is measured by a photocell, The saccessive peaks on
the intensity curve correspond to integer values of the fringe order
n. By observing the time of occurrence the optical creep fuanction y(t)
can be determined from (7.0-1) and (7.0-2), A graph of § determined

at room temperature for mix A is shown in Fig. 7.1. The resilts of

tests at various temperatures ars shown in Fig. 7.2, for wmix B, These

N
¥

two mixes were of the same proportions of raw matsrial but show a slight
difference in their mechanical and optical properties,

The longitudinal and lateral strains were also m:asured at room
temperature for mix A, The tensile creep compliance D{%) computed b
(7.0=-3) as shown in Fig, 7.3, and the transverse contraction ratio vis)
is shown in Fig. 7.4. Because of the small change in thickness th:
lateral strains are difficult to measure, and the large band of ex-
perimental data in Fiz., 7.4 is due to this ex erimental error rather

than any real variation of material properties, The shear creep com-

pliance J(t) and bulk creep compliarce B(t) caleulated from [7.0-%)
are shown in Fig, 7.2 and 7.4. In the Lessts at higher temperatures of

mix B, only the longitudinel strain was measured, The tensile creep

=, 7.7,

k=3

compliance is shown in Fi

If the dependence of the final data on tenperature is neglected in
Fig., 7.2, then the temperature dependence of the optical creep function
over this small change of iempzrature can ve reasonabl. well described
by a»temperature shift factor as defined by (4.4-1) and (4.4-2), TIhe

optical and mecharnical shif* factors are shown in Fiz, 7.8,



7 well desceribed

by the empirical relation (4.2-5), and (4.2-6) with a = 0,15 x 107 in/1v°

and 3 = 0.3 x 10'2. The resulting representation is shown in Fig. 7.9.

The speed of propagation of a wave in a rod was measured as de-
seribed in Appendix A.,5, The value of the relaxation modulus at time

zero is then calculated from (2,7-8), Since

1
%(0)

D (o) =

the initial value of D (t) is then known,
In order to analyze the photoviscoelastic data it is necessary to
calculate the inverse of the optical ereep function ¢ (t) related to

Y

§ (v) by

LAp—— st

g (8) g (=1) dr = % : (7.0-7)

o

This equation is solved by a numerical! technique in conjunetion with
the digital computer as described in ‘ppendix A.l. Ths resul ts are

shown in Fig. 7.1C for one case.



Test I.

A sheet was bonded to metal blocks along opposite edges as
shown in Fig. 8.1. The blocks are essentially rigid compared to

the polymar, By loading the blocks a statz of nearly plane stress

is obtained in the sheet, If the load on the block is constant,
the problem is one of proportional loadirg as described in Section 2.3.
If the time variestion of Fiyg, 7.4, can be neglected, then the stresses
will be constant, Experience with elasticity problems leads us to
think that variation of v should not have a sireng effect, Therefore, L
we choose this configuration for some preliminary teste,

In the first test, the wodel was "sheared" by constant loads
Pl. As shown in Section 2.3, if the variation in v is n:glected,
the siress will be constant and be the same as if the material were
elastic, Th2 stress state iu an elasiic material was determined by
standard photcelastic means, 1t was found that the shear stress varied
alorg the centerline ae showr: in Fig. ¢.,2, By symmetry, the point
in lhe center of the specimen experiences a pure shear stress, i.e.
op =0, =0 . Thus, we expect cousiant loads P, 'O glve a constant

X y

state of siress

5 =0
X

g = U {8.0-1:
J

T =
Xy T

at the center, The particle at the center experiences a creep test.




n(t) = = a(t) = =2 20 y(t) (8.0-2)

The experimental results are shown in Fig. 8,3, They agree with the
expected value, The small deviation m&y be dus to nor-linear ovehavior
caused by the rather large stress applied.

We then decided 1o demonstrate the tact that the isoclinic z.gle
does not coincide with the principal axes of sirese, By first applyins

a load P, and then, at a later time & , applying the load P,, the
19

2 1’

prineipal axes of siress ean t= made ©o rotate. Ifhe isocliniec anile

-

cai e simul ta.eously measured,
The weight of the fram: alone caus=d som- shear sciress to wnich we

may regard as having reached an equilibrium state., By (4.3-2), (2.2-1)

and the formula of Section 4.1,
(8.0-3)

The loads P2 result in a state of stress at the center wiih
Txy = 0, We assumed that the StreSS<7y was nezligivle and 5, was
approximately equal to the average stress:

g, =T, t >0

g._ =0 (8.0-4)

where the xl direction has been desi_nated as x and the X, direction

as V.




The values of the refraction tensor ars

N = Q0
Xy
N, - Ny j{t) o

The shear load P1 appli=d at time to results in stresses:

T = T >t
by o]

ny = i ( b=t J 1
N-N_=20
Y

Since the provlem is linesar

(8.0-5)

(3.C-2)

(6.0-7)

RN - [ P by g N e
the resyonse to the three orress

gtates can be superimposed, The coubined ~aluszs of iue rafraction

Lot

\

tensor for t > 4 are detormized by adding (8.0-3), (£.0-3), and

(8.0-7):
N = ¥(=) m w0 (et ) v
Ny = Ny o=y (t) o

The iscelinic angle is given by
2N

T

van 20 =

(8.0-2)



Thus,

ten 2 %0
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27 Jlt=-t_)
[] + [e]
9] V( v
(-t
tan 25 _ + 2
s (%)

27
-_ (8.0-10)

tan 22

The angle o predicted by (8.0-1C) is compared with the olserved

isoclinic angle in Fig. 8.4.

deviation,

The agreement 1s within. experimental
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A specimen shown in Fig, 9.1 was cut from a sheet as described in
Appendix A,2, The model has a circular outer boundary and an irregular
inner boundary., A uniform normal pressure was applied along the outer
boundary and the model was heated by a heater along the inn:r boundary.
The polaroid was cut to the shape of the model and placed in contact
with i3, Transparent plastic guards were then placed arouns the material.
to minimize heat loss at the surface. The procedures are described in
tppendix A.7.

It was shown in Section 2.4 that the stress field in a plane stress
problem with stress boundary conditions and uniform leaperaturs is the
samwe ag if the material were elastic, In particular, th: stress is
independent of the material properties, Thus, if the unheated model
is subjected to constant externsl pressure, the stress at any point
should be constant, Each particle experiences creep at constant stress,
The isoclinic angle ati each point is then constant and coiancides with
the principal axes of stress, Take the coordinate axes along the prin-

cipal axes, Then equations (6.C-8) and (7,0-2) lead to

h.,t , h N .
n(t) = S A(t) = Zn; g(t) [.ol— 32] (9.0-1)

Since ¥(t) ic known from the tensilz test, Section 7, the expected fringe
order can be calculated, to within a constant factor. Thz actual fringe
patiern was recorded with a movi~ cam-ra. 4 typical framz is shown in
Fig. 2.2, The expected frings order is compared with the observed fringe

order at several points in Fig, 2.3 and the agreemsnt is satisfactory.
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If the temperature of the model is not uniform then the stress
field will not be constant even when the boundary pressure is constant,

However, by means of (6.0-2), the difference in principal stresses and

I
T
(i

¢3
b
jov}
ot
e
s}
o
o}
<
®
"

directions of principal stress can be calculated by I
the observed history of fringe order and isoclinic angle.
In the present test, the model was heated until a st=ady non-

uniform temp-rature distribution was reachad, This temperaturs was

maintained throughout the loading. Thus each particle experiences
isothermal deformetions. Equation (6.0-9) applies to each point but
the function ¢ will be different for each point because thz iemprrature
is different.

We expected that the stress at the lmmer bouwrfdary due to a step
change in boundary pressure would be large at first, then diminish,
but finally inereasing to initial valus, As shown in Section 2.3, the
initial stress should be the same as for an elastic material and lhere-

fore, neglecting the effect of temperature on the valus of Glo) and X(o),

~

Fy

the stiress should be the same as in the aniform teuperature test o
Fig., 3.3. The hotter points on the inner boundary then begin o relax,
The modulus G(t) becomes much smaller at the hotier points. Consequently,

thzy "carry & smaller portion of the load", and the stress will decrease

at the hotter poinis. As described in Section 2.6 the stress at long
times is the same as for an elastic material; therefore, nezlecting
the effect of temperature on G(») and K(»), thz stress should approach
that observed in the uniform temperature test.

The fringe order actually observed at a point is shown in Fig., 2.4,
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At & point on the boundary the principal axis of stress are normal
to the boundary at all times, Choose the coordinate axis along the
principal axis of stress. Then, in (6,0-9), 8 =,» = ( and 0y ® Gy’

& (t-1) A (1) dr (9.0-2)

—¥ct

-
=

o}

%
The stress calculated using the observed fringe order and the function
8(t) calculated from the optical creep function ¢ (1) for the particle
temperature, is shown in Fig. 2.5. It has the expected character.

The exact analytical solution is unknown and so no comparison is possible.




For the quasi-static problems of loaded structures containing linear
viscoelastic materials an experim:ntal technique has beesn developed. The
experim=ntal technique employs optically birefringent viscoelastic plastics
from which models are prepared and observed in a photoelastic bench under
the samz loading states as in the prototype structure, Th> mechanical
properties of the plastics can be tailored to those of the protctype.

The observed fringe patiterns in The pholcelastic bench can be interpreted
by employing the theory detail=d in this report and the expérim ntal

characterization both optical and machanical of ths birefringent rlasiic,

mw

The technigue permits quanti<ative sirsss znalysle of enginzering strue-
tural problems which are analytically extiremely difficult or intractable,
Such problems exist in solid propellant rocket motor graine where the
motor is exposed to thermal and handling loads, in highly h=ated structures
ag exist in re-entry vehicles and will =2xict in supersonic transport
aircerafy, ete, The developed eguipment and techniques are established and

are in the process of being refined so they can be used routinely in an

m

engineering analysis or design study



b4

IV, Plans for Continuing Effort.

In an effort to build upon the knowledge and experience gain-=d

in the first phase of tihis research program and to meke the resulis

more meaningful to the -engineer and designer who will in the future
be faced with this type of problem, the following areas of continuing
study have been defined.

(a) existing techniques, boih experimental and interpreiative,

L]
will be refined for the quasi-static and linear material

| (b) an extension of the thoery to include ron-linear and non-

thermo-rheologically simple material will be made,

{¢) an effort will be made to coordinate experim=ntal techniqu-:s
and numerical ana’yses %to develop 2conomical technigues 1o
analyze engineering siructural problems which cirrently are

intractable.

(d) dynamic studies will be undertaken, It will thus be necessary
to dynamically characterize the material which will of necessity
involve wave propagation studies, This will involve developuent
of dynamic equipment for ithe high resolution optical bench which

will be used in dynamic photoelastic and photovigcoelacstic studies,
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Isothermal pressurized grain
Model 6300 seconds after loading
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APPENDIX A1,

CALCULATION OF RELAXATION MODULUS FROM CREEP COMPLIANCE

BY NUMERICAL METHODS

1. Introduction:

Most of the problems concerning stress distribation in linear visco-
elastic bodizs are often soclved by assuming that the behavior of the
material under stress can be approximated by a suitable combination of
linear viscous and elastic elements (dashpots and springs). This method

leads to the problem of solving a differential equation of the form:

m . n
. a* ‘ di
) Pi T olt) = ) g T v(t) (4.1-1)
. at S at”
i=o i=o
where a(t) is a stress component

v(t} 1is the corresponding strain component

p; and q are material constants depending on the nature of

the springs and dashpots used and m and n are integers whose

values depend on the number of springs and dashpots and the

way they are combined,
This method ic simpl: if we can approximate the behavior of the material
under consideration with a small number of elements. ?owever, for many
materials any realistic approximation of their stress-strain relation by

the above method requires a large number of elements resulting in a diff-

erential equation of high order. The solution of such an equation becomes
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almost impossible beyond a certain stage and hence the above method of
representation of mechanical behavior is of limited use in stress analysis
problems,

Another method which is much more general is to represent the stiress-
strain relations by Convolution integraels following Boltzmann's Super-

position Principle., According to this, the stress-strain relation of a

>
1inear viscoelastic material can be written as.(l'l) :
%
alt) = [E(4-3) $(2) ez (1.1-2a)
— _. _ _ )
or
1
v (8) = [ p(t-2) 5(2) a3 (A.1-2b)

where E(t) is the relaxation modulus of the material at time t. D(t) is
the creep compliance of the material at time t and the superposed dot rep-
resents differentiation with respect to time, Most of the problems are
concerned with materials which were in stress free state prior to time

t=0 and in such cases the lower limit of integrals in (4.1-2a) and (A.1-2b)
is replaced by zero, The relaxation modulus and creep compliance are con-
tinuous functions of time which characterize the particular viscoelastic
material under consideration and hence should be evaluated experimentally.
However, as they are not independent as shown in the next section, the
measurement of one of the functioﬁs should suffice for the calcuiation of
the other, Suitable numerical %echniques are developed for the calculation

of creep compliance from measured data of relaxation modulus in the previous

——e
¥
Number in brack ‘ts refers to the references at the end of this appendix.
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{1 2)
‘=*T/ but no such methods are available for the calculation of

literature,
relaxation modulus from data on creep compliance, Such a numerical method
is very desirable as it is easier to perform creep tests and thus measure

creep compliance at various times rather than the measurement of relaxation

modulus, The aim of this discussion is towards such a goal.

2. Basic Theory:

Taking Laplace transform of (A,1-2a) and (A,1-2b) one obtains,

r,T=S:(.F

—~
>
—
t
0
[$Y]
~r

i

ad y-s33 -

N
=
et

1

)

.o
o

where the superposed bar on a variable represents the Laplace transform
of that variable and s is the parameter used in performing the trans-

formation, Multiplication of (A,1-3a) and (4,1-3b) results in

ETD = 1/s2 (A.1-4)

Taking the inverse Laplace transform of (A.1-4) and assuming that the

material is in siress free stiate prior to t = o, we getl

t [ ]
| B(t-7) D(7) dr = % (A.1-5a)
o)
1

or [ D(ser) m(r) ar =t (£.1-5D)
o

The above equations are the fundamental relations between the creep
compliance and the relaxation modulus of the material and hence can be
used to calculate one of the above functions provided the other is known
for all times starting with time zero, Any analytical solution of the
above equation requires the creep compliance to be a simple function of

time., But for many materials, any realistic approximation of the creep




compliance by simple funetions is not possible and hence one must resort
to numerical methods for solving either fA.1-5a) or (A.1-5b), Although the
numerical method has the advantage of requiring values of the creep com-
pliance at only a finite number of discrete times, it does have diffi-
culties with accumilation of error as itime increased. In the next section
an attempt at a numerical method of evaluation of relaxation modulus from

creep data is presented using equation (A.,1-5b),

3, Humerical Method:

Several creep testis have been performed on viscoelastic models. The
results are presented in Fig, A.1.1, All the data fell between the two
broken line curves, The continuous curve shown ig taken to be the actual
creep curve, Additional inflormation concerning these tests is presented
in reference 1,3,

Suppose that the relaxation modulus at time t = T is desired, 1i.e.
E(T). The interval [0,T] is divided into X subintervals of arbitrary
maznitude with t

=oand t, . =T, Indicate D(ti), E(ti) etec, by

1 1
D(i), E(i), ete. Using this notation (A.1-b) can be written as:
K+1

T

t
r s
Kel © ) Dty - 1) =lr}

£
.]

(A, 1-8)

In each interval let us approximate
Yi41
r
- E ~ 1,
! D(ty - ) B(7) dt ~ D(%,
by
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K
» ~ r / -t Wl + 4
so Yap = 0 DUTq- v ECe) (b b0
i+l
= DUty o= 5 2050 Ty q= &) (4.1-3)
K-1
o . N
i Vi T by B Wby ti)
i=1
Rearranging A.l-8) we getd
( | t - Y R(EY = 3 -
D (by q- ) (- ) B(E) K1
k-1
Y-‘ a4 — (4. o
N D (tK+l- ,1) (i) (% 4= u1?
i=1
Hence Kfﬂ
- iy - t.) - (1
tpogm o Plogg= v o (g g- o) 2(0)
1=1
F(K) = (2.1-2)
Dty 1= o) - (B - )

Ty

This is the fundamental relation used for the evaluatioa of the relaxatbion

modulus at varicus times, Hotice that when K= 1, th: above formula becomes

R(1) = — (2.1-10)

and the number of output valuss is one less than the nuncer o inpus valuaes,

le. when I'(%) is given at (X 1) discrete times say D(L), D(2).... D(K+1) we can

cgleulate only K values of ¥ at tim's tl’ tz, Ce tK'
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Suppose there is a certain amount of error in th: calculation
of F(K-1) dus either to faulty data or to numerical rounding off, If
the influence of this error is tc be riduced, the coefficient of I (K-i) sowd

be less than 1. This vul oo ie iidic »d 5 O

o K-—l L ERN
( - 4 -
A & by 1) . K™ b A
/}:—1 - . . ) ) ‘ (J'L. -ll)
D( UK"l_ L’K J UI{*].- JK
Hence we should have
5 ) P A
Dby - ) N eS| L
{- + L - %
Dt o) KelT
or
Dt .= t, ) ‘
N K-1 K-1 .
P AN - ] :
-1 [

However D(%) is an inereasins runction of tvime and (tK_l— 1, 1) > (t, .- 1t

This implies that

Dt - b y)
.1
D(t -t )
Ve

In order to reduce the error in the calculation of F(K) dues to ihe errors

in E(K-1), ®(K-2) etc., one should have

+ - + -
by . D(ty 1= g y) . (1.1.19)
et 3 D(tK+1“ b )

that is on: should take each interval to be larger than the previous one

and the size of the intervals in any individual calculation should be
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decided by the inequality (A.l-13), The example given later in this

section is carried out on the bvasis of the abovae criieria,

4. Further Error Analysis:

3
Hopkins and Hamming(l.2,

used similar methods of nume2rical integra-
tion in order to find creep function from measured values of relaxation
medulus and concluded that the error should gradually decrease on the

(1.4)

basis of the above criteria, Lee and Hogers used simiiar criteria
and concluded that the error decreases rapidly in the above type of

numerical integration. However, careful observation shows that this is
not always the ease and that one should go further into an error analysis
in order to have a proper subdivision of the time interval which insures
sradual error reduction, For the time beliny let no physical wmsaning e
specified to either D(t) or E(%). Calculate E(t) from the known valuee

of D(t) which are related by the approximate expression (£,1-:;. Let

T(K) and E(&) = (1 +€K\ (¥, re uhe computed and aegnal valuzs of E(tK).

Then
Error in ®(K) = ¢ E(K) (£.1-14)
Let the zrror which would occur in E{K-1) be el E(K+1). On th basis
of previous analysis one may write
K+1
€F+T E(K+1) = CK €, B(K) ¥y_1 (4.1-15)
whers iy . is the errcr in caleunlated walus of T{K+1l) due to errors in

-

B(K-1), B(K-2), ...B(1). ;

Let c§+1 (1 -a) ‘

~~
NES
.
o

i

—
[

~—
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Then

& B(K+1) M
= 1 - Q =+ :——T‘“T—)- (A.l-—l'?)

¥) Rt

Tquation A,1-17 shows that ths error gradually decreases only if

q > —i=b (2.1-18)

x B(X) .

But
Bel 0 DOm0 (- )

D{t, - 4 (% 5= ty.q)
VUKe2T K1) VUKL2T YK+l

(A.1-19)

Henece th: criveria for the zgradual reduciion of ihe error is

D1, = ty) (b, 1= )
1 - K+2 bK . I\ l I l > A (.“1_20)

Dlt -t (t, o= b, o) S, T{F

(g2 K+1) YE-2T K1 g T

Two possiltile cases exis™:

Cuse 1: D(3) represenus crozp compliance., Ihis ie the casce wiin wihich

this secvion is concernsd. Ia siis case D(t) ic an inoressiu

function of time and

D(tK+2— )

n -
”(tK+2 L

>
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Case 2: D(t) represents relaxation modulus, This case corresponds to
that considered in references 1.2 and 1.4 . In this case D(t)

is a decreasing function of time and

D(ty, o= )
D{ty, o~ txip)

If the intervals are gradually increasing, the second term on the lefti side

< 1 (A.1-22)

of {A.1-20) is much less than unity and the inequality is satisfied, except
in extreme cases. This is the case in the problems solved in references
(1.2) and (1.4).

In the first case, however, the second term on the left side of (4.1-20)
is not much less than unity, as one of factor in that term is much greater
than unity, and the other much less than one. Hence unl=gs proper sub-
division of [0,T] is made, the inequality (A.1-20) cannot be satisfizd
and a possibility of increasing error exisis for many types of partitions

of the interval [O,T].

5. Data JReduction:

From Fig, A,1.1 it is seen that the data for short fimes is not avail-
able (particularly D(o)). Unfortunately, this short time data plays an
important role in the calculations as it i1s involved in the caleulation of
E at every subsequent time. From the above discussion it is seen that the
accuracy of the calculated values of ¥ depend, to a large exteni, on the
accuracy of short time values of D; which ars either not available or
available only as an approximation., Hence a best estimate must be made

for the short time data.
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ry
4

D(t) is an inecreasing funetion of time wit continuously decreusing
derivative. This fact is used as a guide in estimating the short time
data., :The original experimental data is gziven as a graph vetween D(3t)
and log . It is very difficult to determine on this scals whether D(t)
is increasing or decreasing, Hence the short time data is reploited

(Fig. A.,1.2) as & grapn of D(t) versus t, A smooth curve with continu-

ously decreasing slope is drawn passing through most of the data points

and this curve is extrapolaisd to + = o, his curve is then taken as
the correct representation of the short itime data.

o

. An Example:

A Fortran program has been wrilten for the calculation of relsxation
modulus from creep compliance as given by equation (A.1-2). A copy of
this program is presented in lable &,1-1, Taking treep compliance data
from Figures A,1.1 and A,1.,2 the relaxation mod:ilus has been calculated
for tim:s up to 20,000 seconds, Since the results and daca are inter-
changeable in equation (A.1-2) the creep compliance has been calculated
using the above calculated values of relaxation modulus as the input
data, e results of both these caleuwlatious are shown in Tables 1,122

elaxation modul:is are shown

=3

and A,1-3, The caleulated valuss of the

plotied versus lor t in Fig. A.1.3.
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TABLE A,1-2

Input data for mechanical relaxation from mechanical creep

Tims

(sec,)

Mechanical Rz2laxation

Cree
D(t)/D(0)

Input

35.0
00.0
100,06
200,0
320.0
600.,0
1000.0
2000,0
3500.0
€000.0
100C0.0
20000.0

(AL T,

32000.0

20 3

0.411024
0.322320
C.2357C0
0.127657
C.16173%5
0.137743
0.,110897
0.102132
0.032821
0.085204
0.072322
0.0771L44
0,073878
C.072718
0.071856

—

(PR WS 4 YA
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TABLE 4.1-3

Input data for mechanical creep from calculated mechanical relaxation.

Time ' Rzlaxation Creep
(sec.)
Input Output
T e
E(t) x 0.4 x 10-3 1p/in?
0.0 0.8 veerirrininnnn. e, 1.562500
1.0 0.640 L ittt 1.838692
2.0 0,526869 ......uviinunn. ceaenens 2.235404
3.5 0.4110%4 ............... cre e 2.,881257
5.0 0.322320 ... .ttt 3.739231
10.C 0.235700 ... . iiiiiiineneanns ceen 5.838307
2C.0 0.197657 ..vivvinnnn. ceecieea .. 5.88943%
35.0 0.161786 vivvneiiiinnnnnnannnnns 7.189413
60.0 0.137943 ...... e Cereecenans 8.6928941
10C.0 0,110897 ....... e eae s .. 11.320508
200.0 0.102137 L.ivviirivrnvervensoncnns 10, 580227
350.0 0.092821 ........ teeaarea eee.s. 11,721610
60C.0 0.086904 ........ Creeeteacaranees 12,728500
1000.0 0.079325 .. .veiinieniennnnns cewe 130942489
2000,0 0.088144 ........ e ans reraas eeee 13.511937
3500,0 0.073678 ...... G eeeverreesanaeass 13,282328
£000,0 0.072718 ,......ccvus ceesieeraens 14.177561
10000.0 0.071856 ,...evuvvnen vt aees vee 14.052345
20CC0,0 0.072256 .. iivivierrnnessnnnnsnns
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APPENDIX A 2.

Preparation of Model Material

Th= model material must be iransparent, exhibit blrexrln:ence'depeaaezt
upon the mochanical state and have viscoelastic properties similar to those
of *he prototype, The first phase of ths development of a model material
consisted of mixing 25 test batches of epoxy and polyester resins and
silicone rubbers with various plasticizers and harderners, The more promising
candidates were selected from *the 27 original mixes and were casi into sheets,
Tensile specimens were cut from the sheets and creep tests were parformed to
determine the besi{ model material,

Commereial {lexible polyester (Reichold Chemicals Inc., 8131) and with
1% MEK Peroxide is a useable model material; however it has low birefringence
and relatively high absorbtivity. The main disadvantage of this material
is the difficilty of mixing reproducible batches,

epoxy {CIB2A, Araldite 5C2) plasticized with varying amounts of
Di-n-but;l Fhthalate and cured with CIBA, Araldite 121 produces a low-
modulus, transparent viscoelastic material, The birefringence of this
material is not as high as the material used for subsequent experiments.

A

IBA, Araldite »02 and 508 cured with 10% TRTA are oirefria-

H
C%

oh modulus and a very short relaxation time.
The material selected was an epoxy mixture made from components marnu-
factured by the CIBA Co, Three componentis are used: Araldite 202, a rigid

epoxy used for photoelastic testing and as a strucutural adhesive, Araldite

M

506, an epoxy flexibilizer and Araldite 263, an amine hardener. This material



was selected because of its high birefringence and because its relaxaiion
tize could be varied over a wide range by simply varying the proportion
of flexibilizer used in the mix,

If Araldite 6010 is substituted for i:aldite 508 a final macerial is
obtained which is of slightly higher mod .lus for the same proportions and
has nearly identical birefringence.

Tests were made tc determine the amount of permenent viscous flow
in the material. Creep tests were perrformzd on tensile specimens at the
maximum level of stress used in subsequen®t model testing, The specimens
were then removed from the creep test apparatus and allowed to relax for
several days, Measurements of une initial and final lenéths 01 the speei-~

mens showad that the permanent strain due vo viscous flow was less than

A mold was propared to cast sheets of the material 1/4 inch thick
and two sguare feet in area, Sheets of plate glass were us=d for the
two facee of the mold, 1/4 inch surgical tubing formed a caskei beiween
the sheets on 3 eides, the thickness heing controlled by 1/4 inch spacers
placed beiween the glass faces and outside of the gasket,

This epoxy formulation is & very tenacious adhesive and care must be
taken to completely cover all surfaces exposed to the epoxy with a release
agent, To insure mold removal the surfaces must first be cleaned with a
solvent, thres 1light coats of a Carnuba-base wax are then applied, allowing
each coat to partially dry and polishing it befors application of the next
coat, “inally all surfaces ar2 sprayed wi“h a polyvinyl alcohol solution

which when properly applied and dried forms a smooth water soluble film,
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Some experimenting was required to evolve a spraying technique which would
give a glassy smooth surface, The Carnuba base wax and the polyvinyl alcohol
solutions arzs available through most commercial fiberglass supply houses,

At room temperature the viscosity of the uncatalyzed resin components
is such that small air bubbles will become trapped im the mix ture while
stirring, resulting in a poor casting, If the mixture is placed in a vacuum
some bubbles will be drawn out but the mixture will catalyze vefore all of
the bubbles are gonz2. If th:» resin components are heated to 130°F prior

ciently 4o allow entrained air

.

to mixing ihe viscosity is lowered suff
to floatl off before solidification, This approach has been used Lo cast a
number of very successful sheets of model material, heaving the components
reduces %the pot life of the mixture to less than five minutes after the
hardener is added. Finel mixiag and pouring info tne mold must be done
quickly. A paddle mounted at the end of & rod and driven by a slow speed
drill movor facilitates mixing,

The resin is cured in an oven for 12 hours whilz the temperature is
maintained at 160 + 5°F, The mold is %aken from the oven and tne clamps re-
moved, The rubber-tube gasket 1s stripped off and a razor blade is used
to cutv arourd the edges between the cast sheet and the glass. Vooden wedges
are slowly pressed belween the edges of the glass faces while the shzet
is held nder running water.

~

Careful prying will remove the mold after about

IS JE NN

ive or ten minutes.
The newly cast sheet is then washed to remove the mold release agent and
placed on a flat paper or teflon coated surface o relax to equilibrium,
Af'ter the sheet has relaxed for a day models and specimens may be
laid out on the sheet. These shapes are then cutv from the sheet on &

band saw at high speed with a skip-tooth blade.
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Machining aacurate models from this materisl presents scms preblems,

If the material is clamped lightly in & viece or & chuck it relaxes and becom=s
loose, If the vice or chuck is tightened enough to hold the part, the part
becomes distorted so that a flat surface or a square edge after remcval from
the jig is no longer flat or square, Ancther difficulty appears when a deep
¢t is made, During a deep cut the tool mashes the material under it slightly
so that after relexation the part is larger than expected.

These peculiarities have been dealt with by using double-sided adhesive
tape to hold the model to the face plate for turning operations and by
taping the jaws and bottom of the vice for milling opsratiorns. If sharp
corners are required, the model may he taped on both faces and sandwiched
between 1/8 inch plexiglas, the sandwich beinz then taped on both adges
and very lightly clamped in & vice, If a particular dimension Is desired,
it should he approached slowly with fine cute, ‘hen the machine has reached
the final setting, the specimen is allowed to relax for 1% %o 3C minutes
and the last cut is made at the samé machine set’irg., This process can be
repeated if extreme accuracy is required.

Flat surfaces and edges are cut with a sharp fly cutter running at high
speed, Circular section can be tirned ir a lathe at high speed aeiry 8 sharp
pointed togl with about 350. Holes may be drilled if the model iIs sandwiched
between plexiglas and the drill is sharp and turned at high speed.

For some models it is helpful to cool the model in a refrigerator
immediately before machining. The material is quite sUiff at 4OOF.

The models used to date in the project have been machined dry. If a
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coolant is to be used experiments should be made on small scrap pisces o test
if the coolant accelerates the growth of edge fringes, Water, for example,
will considerably accelerate the growth of edge fringes,

Finished models stored at normal rcom conditions will te useable for
several weeks or more before edge fringes becoms excessive, Carnuba wax,
acetone, n-heptane, methylenedicnloride and water will accelerate edge

fringe growth, a dessicating aimosphere will retard edge {ringe growth,

The models reported hav: all been stored at room conditions.



APPENDIX A.3.

Calibration of Model Material

The photoviscoelastle material is calibrated in a tensile creep
test, A wypical tensile specimen 1/4" thick by 0.6" wide by O" long is
shown in rig. A.3.1, Usually six or eight calibration specimens are cut
from each sheet of model material, Experiments have shown that .specimens
cut from different locations and orientations in the sheet j;ield the
same creep behavior.,

The entire batch of specimens may be stacked on edre and milled
to a uniform width in one sel up with a fly cutter. Aluminiun tahe are
bonded to each end of each specimer with Pasiman 910 and the specimens
are placed on edge on a flat surface to relax before tesiing, By having
six or eight specimens any one specimen has enourh tim~ Lo relax bhetween
tes s while the othér specimens are tested,

Two creep calibration jigs are shown in Figures 2,3.2 and *,3.3,
In both jigs the load is applied to the specimen by releacing a weight
and total specimen deformation is measured with a dirferential transformer,
The load is measured with a beam instrumented with sirair cares, The 1ogd
cell outpuat allows one to see in detail the shape of the input-load step
in creep testing and records the load relaxation in relaxation testing,
The time interval during loading is approximateiy 0,2 seconds. 1 calibrated
clip gage bent from a 0.(C10 inch thick strip of aluminum and instrumented
with strain gages is used to measure the changin: width of the specimen as

it creeps. This measurement allows Poisson's ratio to he computed.



)
(@]

Al sirain gages and differcutial trancformers are powered and thelir

outputs recorded on a d-channel Brush recorder with a calibrated timne hHass,

The fringe ‘rowth is also aubomatically recorded. The outpar of a
mercury-arce lamp is filtered with a Viratter 775 filter which passes the
green line (4080 X) of mercury. This light is passed bthrough a polarizer
(Polaroid) chrough ihe creep test epecime, Lhrouch a gsecond polarizer
with axis abt right angles to the rirsy and b luiww a photomul viplier
tune. The output of the photomultiplier tite shows the periodic
inereasing and decreasing of 1ight invensic;. The mayimdns and miilmons
of this c¢arve are ﬁell defined ana represent inereasin’ hall lrine
ordars,

Both creep test Jigs have elecuric resisiance heaters wiich are auio-
macicaily controlled to maintain a seti tenpzraiure t 0.2°7 over the ran;e
rrom room Lemperaiure Lo l)OOF. Cirecwlating fans withia the test chambers
incure & uniform vemperaturc, One creep best jig, flguce 4.3.2. 1s
equipped with a well insulated tesit chamber and four thermoeleciric
¢cooling plates. The plates are powered wiih 1<V, 1004 d.c. and controlled
to maintain a set temperature = O.2OE frow roowm Lbemperatuire o BOOE velow
room temperature,

The zlass transition temperacure for the model material is in tihe
region of room temperature, Small changes in temperature (QOF) cause
marked chanzes in mechanical behavior. At 130 o 150°F the relaxation

. . o . o . On .
Jim- is very short and the material is rubiery while at 32°F it is quite

rigid.



Tensile Creep Specimén

Figure A.3.1:




(a) light source, filtered Hg arc
(b) temperature controller

(¢) load cell

(d) differential transformer

(e) photomultiplier tube ,
(f) calibrator

(g) brush recorder

(h) weight pan ' .

Figure A,3.2: Tensile calibration bench
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loading frame .
light source, filtered Hg arc
Polarizer and 1/4 A plate
tensile specimen

analyzer and 1/4 A plate
photomultiplier tube

brush recorder

thermoelectrlic coolers

power supply and control for
coolers

- Figure A.3.3: Tensile Calibration Bench



he coefficient of hermal expaneion was measured v Lhe j1o shown
in Migure 7.4.1, The speciumen resis orn a Teflon coated surface of the
Jiz and one end is bonded to the jig., . metal tab is bonded to tlie free
end of the specimen and a fine wire cclédered itc the ab leads o one
terminal of an ohmmeter, The olmme ler regivters a shor’ circuii when the
rmicrometer is brouglhit o Loueh ihe free end of the specliern, Ry
vhis syeten the micrometler nmeasiremen s may ve Tepeated o within i §,0002,

Sueh accuracy cannol be oblained oy feel due o the low modulus

-

of e model material,
he jig was placed in an oven, zllowed L0 come Lo equilinri.u at
several emperatures and changes of lengwi: were measured, The hygteresis
was delermiuned by approachinng a gliven lemperature from above and below
and was smwall, The lemperatiwce was varied welween 70 and IEU(F ard the
R irn

coefficiens of thermal expansion was calculacted to be L,0. x 1G oot e

Coyrveclion was made ror Jhe expansion of ihe measarin: jio

[£91

cal

,_

The coefficient of ‘herwal diffusiviiy wa
>

Lhe temperature history at the centers of two slugs immersed in a constant

calaced ny meusiring

temperature bath, The lemperatires were measured with iron-coustantarn
ithernocouples cast into the siugs, te conglant temperatare batl was
water in a large laborator) tuernce bottle,

The slugs and lhe bath were allowed Lo reach their scparate

e

quilibriom
wemperatures as determined by the thermocouple readings. The slurs were
then immersed in the bath and stirred vigorously. The temp:rature history

being recorded on a calibrated, self-balancing potentiomeier, & rectangular



and a cylindrical slug were each iesied sgeveral times to insure re-

proiducivilicy. The thermal diffasicod - wag caloilated for boin geomeiries

. N . e . C=bh L2
ay several points in the Lemperalures nisctory and was 32.2 x 10 4 v /bour

’

+ 4%,

The cpecific heat was determined Ly a caiorimeier test a.d was
o ; nor Ow : o v . v ~ PR S N T 4 .
3,003 BTU/lo. r + 8%, I[he deusity of uhe wodel maserial -s 0,040 lofecavic

inch, Trom lhuse values the ithermal conduciivivy was computed to De 0,131

A00/ne, £uOF £ 100,
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Figuré A.44l: Apparatus for Thermal Expansion Determination
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The speed of a weak pulse throuth variois model matorials was
neasured., This measurement was made in order to et the Limitia
valus of the short-time modulus asing the relationship (2.7-8.)

The specimen was a rectan-ular bar 1/4" x 1/2" x &' long. A
1/16" thick aluminum tab was bond2d to the driven end of the specinzen
nd a wire attached to the tab and led Lo an oscilloscope, TIhe pulse
was generated by a rod sworr on sirinss as a pendulum,  ‘nother wire
led from the rod through a natisry to the os2illoscope, ¢hoen the
striker rod hit the metal lap on the end of Lhe specimen a Lrig er
pulse was generated. A crystal pickup was bonded to the other end

o7 the specimen with doiole-nackad tape., The pl kup and the g-2cimen

wers positioned on a layer or foam ruover., This arrangement js shown

The cutpul trace of the crystal pick.ap was photogrephed Tron =ne
scilleerope screen for o calivrated sweep rate, Fiewre 4,52, T
sweep wag started wher the giriker hit the metal vat or one end of
the specimen, The kree in ihe pickup outpus cerresponds to the arrival

of the puilse at the other end of the cspe The inuverval Dbebtween
P

(@]
b
(M
®
e
:

the start of the trace and the knee ig thus the time required for lthe
elagtic pulse to traverse ithe specimen, IExperiments were run wilh
specimens of various lengths which showed that end effects were negligible

The graphs in Figures A,2.3. and ..0.4. show the shorti-Lime modulus
for varying amounts of flexibilizer and the dependence of short-time

modulus on temperature in the mixture used ror the reporied models,



~(a) striker and trigger
(b) model
(¢) crystal pickup

Figure A.5,1: Apparatus for measuring

pulse speed
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78°F
20 msec/cm

— Temperature
Sweep rate

i

a) initiation of pulse
b) arrival of pulse

Figure A,5.,2: Oscillograph trace showing arrival of pulse
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Fig., A.5.3. Short-time modulus.
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Fig. A.5.4. Short-time modulus at various temperatures
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APPENDIX A, 0.

Rotating Flements Bench

The axes of principal siress at a point in some models change
with time. During a test these changes may be determined by measuring
the angle change of a polarizing axis as it is adjusted to keep the
isoclinic fringe on the point and by knowing the fringe growth behavior
from a tensile creep test., An equivalent method consists of rotating
the polaroids continuously, while watching the point in question., As
the isoclinic sweeps through the point during each revolution the angle
is noted, This latter system is used in ihe rotating element bench.

The bench is shown in Figure A.6,1, Three light sources may be
used: a point source, d.c. mercury arc with a Wratten 77\ filter, a
distributed source, a.c. mercury arc and a green fluorescent, diffused
source, Condensing lenses are used with the point source light to get
parallel beam through the specimern, The lewnses are removed from the
light path when the distributed light sources are used.

Fach lens stand is fitted with a ball-bearing carrier to support
the rotaiing polaroid around its outside edge, The polaroid is driven
by astepping solenoid through a positive drive, link chain, When the
solenoid is pulsed the polaroid advanced‘QO. The pulse rate is con-
tinuously adjustable from 5 pulses per second to 1 pulse per 2 minutes,

A 10 mm Cin2 Special camera is used to record the fringe patterns,
Mounted next %0 the model and in the f{ield of view of the camera is a
dizital timer with 1/10 second minimum reading. Incorporated in the

timer is a numbered wheel driven by a smail rotating solenoid which is



tied to the driver solenoids indicating the angle of the polarizing
axes,

During the first minute after loadirg the camera ic rmmn at 14 framss
per second o capture the rapidly chanving fringe patierns., The frame
rate is then reduced to 1 frame/second. As the frinse patierms approach

equilibrium “he frame rate is correcpondinrly reduced,

Loading Frame:

A model is mounted in grips ir the loading frame and “he apper orips
are connected to a load cell through a universal join,, Two load zells
off differing sensiitlivitles are available, Four loadins pabtlerns ma. be
used; constant”;oad, constant strain, constant strair ratle and cinisoidal
strain,

Congtant loads are applied by han ing w=ishts on the specimens and
couns tant gtrains are anplied hy 12in” a heavy weight o rorce the loading
mechanism asainst a present stop. Constant strain rate is applied fo
the model b driving the lower grips with a 220 volt, 3 phase motor oper-
ating throush a gear chanje set, By chanzing the gears the sirain rate
may be varied between 00,0418 and 5,75 inchee/minute, A spring loaded
can and tappet mechanism supplies the sinusoidal strains, Figure A 2.2,
The mechanism is driven by an electriec motor throurh a Zeromax speed
reducer, The freqiency is continuously variable from O to 400 cicles/
minute and the maximum amplitude may e varied between O and 0.2 inches,
by inserting appropriate ca Al of “he louding michanicme 2are monted-
in a rigid fram., Stirains are m.as:red wi-h differential itransformers

and read out on a Brush recorder or an osc lloscope equipped with a camera,




- . o A e R P

~(a) light source, filtered Hg arc

(b) Polaroid, rotating
~ (¢) loading frame

(d) load cell -
(e) model . .
(f) timer and angle indicator
(g) Polaroid, rotating :
(h) camera
(1) rotating Polaroid control and power supply
(j) drive solenoids :
(k) solenoid valves for pressure loading

’,

Figure A.6,1: Photoviscoelastic Bench C
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variable speed drive

cam and tappet
differential transformer
grip

A.6,2: Oscillating loader




Pregsurs loadin~ Dovice nnd o

Model: The model and tensile calitratio: specimens were cut from

a 1/4" thick sheet of photoviscoelastic material. The model dimensions

are chown ia Fig, A.7.1. The chape chorey simdates a solid propellant

movor with a four-point star perforallon,

Loadinge Jige A loadin~ jig was tuiio wo apply a uniform pressure

™
{

L0 Lhe cutside edge of the model. The Ji i¢ pievired in Fioure A7,2.

Pressure is appliad throush a 0.010" thick lavtex diaphrarm, The

e

diaphragm

=)

s designed to have enoush slack to follow the model as it

(928
.

7 uniform press. v

deforms wibthoul stretching thus maintai:d
;
The uniforuwity of the loadivnz and the presgure efficiency of *he
diaphracm were determined with the elastic; Hysol 448. specimens pictured
in Fisure A.7.3. Knowing.the elasticity solution for the circuilar disc
and the photoelastic fringe constant tor the calivration model material
one may calculate the effective pressure aciing on the model, This
compared to the gage reading of the alr pressure acoin, on the diéphragm
establishes the pressure efficiency of whe jig, Non-uniformiti, in the
pressure around the edses of ihe dise will cause the fringe patiern Lo
depar: from concentricity. 4 measure of this non-uniformiyy is the per-
cen’ variation in fringce order around an imaginary conceniric clrele
drawn o:r the model. A picture of a loaded calibration spzcimen iu SLOW

LY

in Figure A,7.4. The pressure is wid

crm Lo witkin 10% and the

=

ciency (efrective pressire/gage pressure) is O8%,
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The model is sandwiched in the ji:s between two 1/4" Plexiglas
guarde, Polaroid is bornded to the model eide of each -~iard, These
guarde serve Lo contaln the thin laytex diaphrasm and 1o prevent the
low modulus model from huckling, A copious larer of thin oll separates
the uodel from the guards. Celibration tegsie show that the fricuion
is ingignifiecant,

T sis: An isothermal model was placed in the loading jis and loaded
with @ shep input (approximately 0,1 sec rise time) of pressure which
was maintuined constant throughout the iLegt,  The changing: fringe patterns
were recorded onoa 1G mm movie camera ruoairg atb l
The apparatus is pictured in Figure

digccussed in the t

bl

D

I a second west the model wag healed Lo an aquiiibrium “emperature
dicirivat on, Heal was supplied U a atar..ghaped richrome resistlance
heaver

A2 preliminar, test was run to determine the temperaiure distribution,
A dungr. uodel and guard of the same mazerials arnd dimensions of the ftest
model and guard were placed in the loadirs jiz, loles 0,020" in diameter
were drilld throash the muard and into the model at aeveral statious.
These holes were filled with oil Lo min‘mize their effect on the temperalure
disiribatios. 7The model was heated to equitiorium with constant power
input to the heater, A small iron-constanian thermocouple probe was

pluced cuqientially into the holes io measure the temperature. 3overal

o)

tests showed that the temperature distriimition could ne repeaied 1o

C

within + 1°F, The model and apparatus used for this test is shown in
PP

Figure A,7.5.
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with oha same heas opid 2oed for b Losp e o dicuell v on delorsrtination,

aocauple wells were Irill d I whe Lect wcodel o spob ahrck Lhoe
igurinaion,  The model wae the . touwlad o v Jhe firg? ost and he fringe

patieris recordaed with the Lo omm movie cuora,
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L+ resilis of this Lesys are dioe I Lhe maia told, of dhe repors,
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' a) nichrome heater -

b) laytex disphragm
c) guards, (Polaroid laminated to plexiglas)

Fig. A.,7.2, Pressure ldading Jig (model removed)
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-Fig., A.7,3., ' Hysal 4485 calibration specimens
for calibrating pressure jig,

R
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Fig. A.7.4. Pressure calibration specimen with ecircular

hole (star cutouts in Polaroid).

'




Fig, A,7.5.
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b) congtant pressure air supply

¢) - loading jig (Polaroids incorporated) -
d) camera

e) heater variac

Horizontal polariscope for heated model studies -



a) Potentiometer

b) Thermocouple probe

' ¢) measuring stations :
d) heater
e) pressure 1oading Jig :

Fig, A,7.6. Apparatus fdr determining temperature distribution



Tntroduction:

A high resolution optical bench has heen designed and built. It was
designed to be used primarily as a parallel beam polariscope. This type
of' polariscope lends itself more readily to zolving problems where a high
degree of precision is required. A general view of the polariscope is shown
in Figure A.8.1, and the major elements of ihie bench are outlined. Th=
desirable characteristics of this polariscope are: (1) the beam is colli-
mated to a high degree, which is necessary in several methods of optiecal
observailions of physical phenomena, {2) the useable field is quite large
(11" in diameter), (3) the field is more uniform than one oblained by
other means,

This polariscope is meant to supplement the existing diffused light,

1

and rotating element polariscopes descrived previously. Its purpose is 4o
i1bilize methods of observation which are ot possidle with th: others. For
example, photoviscoelastic materials in general have low virefringesi res-
ponse which for most loading conditions results in a low fringe order with
rather small fringe gradients. One method to improve an accurac, of ob-
servabions under such conditions is to use a fringe mulitiplying device,
This consistis of two partially reflecting plane mirrors which are inserted
on each side of the model to be tested, This results in a muliiplication
of the fringe pattern and hence significantly increases ihe accuracy,
Guch a device requires a parallel beam and the accuracy which can be
obtain=d depends to an exient on the collimation of the beam,

In the following each system of this polariscope is described in detail.

It would be well to note in passing that the uses of this optical bernch
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are not limited to its various uses as a polariscope. Other m:thods

. . ol
of optical observatiions such as Moire fringes are planned,

Optical Syotem:

The primary chacacteristics of Ihe high resolition optical bench
from an opties point of vi=w are;

(a} It utilizes a point light source

[
=

{(b) has a parallel beam worki.y sectiou
(e) Tt hés an eleven inch diameter uasable working seclion,
{(d) It utilizes multi-elewent collimating lenses to achi- e
these characieristics.,

A schematic diagram showiiy Lhe arraggement ol the opiical s;swen
is shown in Figure A.8.2. The point 1ight source is placed at the’focal
point of the large collimatins lens. This is multi-element 4&" focal lewnsih,
F/6 3 aerial photography leus, These high quality lenses, which are the
heart of Lhe optical bench, were oblained from government surplus, “hen
used in thies manner an 11" diameier usable £i=l1d can be obiained, [he
oeam is collimatical such that the deviallions {rom a parallel beam are
less than 4 seconds of arc,

#ichin the parallel beam the light is linearly polarized o, means
ol an avsorpiion type polarizing shees, Hext bhe light is passed hroagh
a gularter-wave plate which generates ciccularly polarized ligho, Just
sefore the 1ight enters the second collimaoing 1 us 11 passes Larcaji

secon gaarier-wave plate and an anal yzer. These elem:nus are wow.ved

directly on the collimacing less, ohig arrasgement ls showe 1n Jlgare A8, 3.
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The quarter-wave plates are designed for 5240 & 200%4 light and the
polaroid sheets are relatively insensitive to changes in wave length
over the visible range.

A focusing lens is placed at or near the focal point of the secoad
collimating lens, This is used (o chuiwe the size of the image that
can be obhained on ihe viewing screen with a limited motion of this
screen,

The viewing apparatus of course depenus upon il Lape'of experimens
heing conduacied, At preseni 1t coneists of the ground glass screen of

il

an 8 x 10 view camera, This porticu of ulio polarizcope has Leen filted

with an optical vench to facilitate the mouuniing of other Types of ob-
»

servation equipment. This may be seen in Flgure A.0,3.

Ililuminaivion System:

In order to obtain accurale guantiwwmilive resalts in photoelastic

experiments monochromatic lighy is requured, Ihis is achieved i Uhes

3

polariscope in the same mammer as used in uhe other polariscopes described,
A high pressure mercury arc lamp is used in contjunction with a narrow

band filter. The lamp used is a PEK-10% 1its spectral ouipu: is slow..

in Figure 4,8.4. t will be nobted that iihe oulwpdt is very rich in ulira-

) - . . . . o Cp oqs -
violet. The particular emission line used is the 40C7A line, The

¥
guarter wave plates used were supplied vy che Folarcid Corporaviocn, and

e
. , o C L1 e on
are designed to be operated at 2000 + 200 A7, Tt wiil thus be notea

t
o

(¢}

that the quarter-wave plates are noi perfecily matehed to the 1ighy

and would result in slightly elliptically polarized light in the working



section rather than tvhe desired circularly polarized lichi., The effect

this le quite small and is compensated for % arranging the quarter-

wave plave of the polarizer and analzer perpendi sular

e
(1

each other.,

Thits reduces the effTeci o a scecond order one wheu coupared o ocher
optical imperfection in ‘he syscem, Cor example, she rinlte size of

the point lirhi source fa 0,C12" arc).

¥
-

The character stic ol various of filiers uced in

Lpes

scope are shown in Ficurse A,8,7. It ihis pariicular

noved that il

thie di :lectric narrow ba.k pass (iller is e
T » e ; . . . . . . LS 5 ..
followin: reasons: (1) the transmitiace ls ol her and yielde ar ircr

in 1lirht intensity by a factor of 2.4 a.d (2) the shape of the Lransg-

wission curve ie more nearly center on bthe mercury line and iLs Jenzral

shape iec niore symmetric,

Loading Davices:

At the present two lypes of loading devices have heen tullt for us:

witlhi this polariscope., Figire /,8.¢. shows a ehrainize

decipn which applies either tension or coupression loads,

traws ol Lipleal

-
8e,

a presg re loading riy for use in applyig a aniiorm precoure Lo the
zxiernal surface ol a civewlar disc., Thic pregsure Jlg diff2rs trom the

ore2 deseribed in Appeadix ALY In uieid i desiged for 48w wilh
masorial of a hicher momdue of —iasticl. and lower sirefriwrer i respo
Thus the operating pressiure must = il 0C poin and Jhe medel deflecilo

ma, pe assumed Lo ve swmail, I this deoeo Gerings woere awed Lo Lorovide
a pressure ceal againgiy the model, btiws ailowing the prossure bto be applied

directly to the model, Nitrogen gas 1s used for ihie workl :n. medium,

seen in Figure A,8.7 is a &-place binary cow:bing device wuich is wzed

aumHer Lierasives,

ALBO

Lo

T

1

&
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Fig. A.8.1. ' Over-sall
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P )4 N4 A

Fig, £.8.2. Schematic Diagram of Optical Arrangement

a - Point light source
b - Collimating lenses - 48" focal length £/6.3
¢ ~ Focusing lens - 20" focal length f£/5.6

d - Viewing device
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Fig. A.8,3, Collimating lens with attached quarter-wave

plate and snalyzer, Also scan arc focus,
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Fig. A.8.7. Pressure rig with rocket grain -

crosg~section and binary counter,




